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Abstract

Flow past elongated bluff bodies for Reynolds numbers

Re 6 500 is investigated here for incident angles I 6 20◦.

Two-dimensional simulations are performed using a spec-

tral element solver for elliptical shaped cylinders for as-

pect ratios AR 6 2.5 to first obtain the base flows, fol-

lowing which linear stability analysis is performed on

the unsteady base flows to investigate the onset of three-

dimensional modes. For low aspect ratio cylinders, the tran-

sition sequence from steady two-dimensional flow to un-

steady three-dimensional flow (steady → unsteady → mode

A → mode B → mode QP) closely resembles that of a cir-

cular cylinder for all incident angles. As the aspect ratio

is increased, the onset of the these transitions is delayed to

higher Reynolds numbers for a given incidence angle, while

the onset of the three-dimensional modes occurs at lower

Reynolds numbers on increasing the incidence angles. The

behaviour of the various three-dimensional modes is inves-

tigated in this parameter space.

Introduction

Flow past bluff bodies has been investigated for over a

hundred years and in recent decades, the two- and three-

dimensional transitions past canonical bluff bodies have re-

ceived more attention since the seminal works of [29, 30,

31]. Of particular interest is the route to turbulence through

the various transitions as Reynolds number (Re = UD/ν,

where U is the flow velocity, D is the minor axis and ν

is the kinematic viscosity of the fluid) is increased [12].

For a circular cylinder, the onset of unsteady flow occurs

at Re ≃ 47 with the formation of Bénard-von Kármán vor-

tex street that becomes three-dimensional around Re ≃ 190

with the onset of a long wavelength instability that spans

approximately four cylinder diameters, know as mode A

instability. As the Reynolds number is increased, mode

A gives way to a smaller wavelength instability known as

mode B at Re ≃ 260, which spans approximately one cylin-

der diameter [31]. Numerical computations via linear sta-

bility analysis [1] and three-dimensional direct numerical

simulations (DNS) by [27] confirmed the presence of these

instabilities. Modes A and B were found to be synchronous

modes with the underlying two-dimensional base flows and

do not introduce any new frequency in the spanwise di-

rection. Modes which are non-synchronous with the base

flow have been observed in bluff body flows such as square

shaped cylinders and are known as quasi-periodic modes

or mode QP [2, 8]. Such modes usually occur at Reynolds

numbers beyond the onset of modes A and B, as in the case

of a circular cylinder at Re ≃ 380 [3]. Subharmonic modes

have also been observed in bluff bodies when the wake

symmetry is broken, leading to a period doubling of the

mode. Such modes have been observed in the wake behind

rings [24, 25], rotating cylinders [13, 14, 15, 16], square

cylinders at an incident angle [22, 23] and when trip wires

are placed in the proximity of bluff bodies [17, 32, 33].

Mode QP and mode C typically have spanwise wavelengths

in between that of modes A and B. When these modes are

resolved numerically via Floquet analysis, modes A and B

lie on the positive real axis of a complex plane, while mode

C lies on the negative real axis. Mode QP occurs in conju-

gate pairs and have real (µreal) and imaginary components

(µimag) of the Floquet multiplier.

Flow past elongated bluff bodies has garnered interest in

the last few years with several researchers performing nu-

merical and experimental simulations [4, 6, 9, 10, 11]. The

wake of elliptical leading edge bluff bodies of aspect ratio

AR = 2.5, (where AR = a/D is the aspect ratio, defined as

the ratio of the major axis of the ellipse, a, to its minor axis,

D) was investigated by [20] and they observed a new three-

dimensional mode, mode B′, which was a synchronous

mode with a spanwise wavelength of ≃ 2.4D and spatio-

temporal characteristics similar to the mode B instability.

This mode was also observed by [21] in their investiga-

tion of an elliptical cylinder of AR = 2 for incidence angles

I 6 30◦ at Re= 283.1 and was labelled mode B∗. They per-

formed linear stability investigations at this Reynolds num-

bers for various incidence angles, and reported a long wave-

length mode of spanwise wavelength λ/D > 6 at I = 15◦

unstable to perturbations at higher incidence angles, which

was observed alongside smaller wavelength modes. They

also observed that the critical Reynolds number of onset for

mode A instability was delayed to Re≃ 330 as compared to

a circular cylinder. More recently, [7] performed linear sta-

bility analysis for elliptical cylinders AR 6 2.4,Re 6 500 at

I = 0◦ and observed mode B′ (labelled mode B̂ in their pa-

per) for AR> 1.8 and a long wavelength mode, mode Â, for

AR > 1.2 which had spatio-temporal characteristics similar

to the mode A instability. Mode Â was previously observed

in the wake of a rotating cylinder as mode G [14, 16], where

the spanwise vortex structure of mode A and mode Â dif-

fered only in the downstream vortices. They observed that

the transition sequence for the onset of three-dimensional

modes no longer resembled that of a circular cylinder for

AR & 1.75.

This study builds upon the studies of [7] and [21], where

numerical investigations are undertaken for elliptical cylin-

ders for AR 6 2.5,Re 6 500 and I 6 20◦. Results from the

linear stability analysis are presented as parameter maps de-

picting regions where three-dimensional modes are unsta-

ble to perturbations. The naming convention of the modes

are retained from [7]. The numerical methodology is briefly

described in the following section followed by the results

from the numerical computations and conclusions.
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Numerical formulation and setup

The Navier-Stokes equations are solved using a spectral

element formulation. The computational domain consists

of quadrilateral elements that are concentrated around the

elliptical cylinder to accurately capture the velocity gradi-

ents. These quadrilateral elements are further subdivided

into internal node points, which are distributed according

to Gauss-Legendre-Lobatto quadrature points. The veloc-

ity and pressure fields are represented by tensor products of

Lagrangian polynomial interpolants. Spectral convergence

is achieved as the polynomial order is increased [5]. The

number of node points within each element (N ×N) can

be specified at runtime with the interpolating polynomial

order in each direction being N − 1. A second-order frac-

tional time-stepping technique is used to sequentially in-

tegrate the advection, pressure and diffusion terms of the

Navier-Stokes equations forward in time. More details of

the time-stepping scheme can be found in [26].

To investigate the stability of the flow to three-dimensional

perturbations, stability analysis is carried out in the Re− I

parameter space for various aspect ratios. The Navier-

Stokes equations are linearised and the spanwise wave-

lengths are constructed as a set of Fourier modes. These

equations are integrated forward in time and the growth of

these perturbations is monitored. After several time peri-

ods, the fastest growing modes dominate the system. The

Floquet multiplier (µ) is then computed; for µ < 1, the per-

turbations decay and for µ > 1, the perturbations grow and

the flow transitions to three-dimensionality. Neutral stabil-

ity is achieved when µ = 1. More details on this method has

can be found in [7, 17, 19, 18, 20, 24, 28].

The elliptical cylinder was located in the centre of the do-

main, with the inlet and lateral boundaries of domain be-

ing located 60D, while the outlet boundary was located

100D from the cylinder so that effects due to blockage were

minimised. Spatial resolution studies were undertaken for

AR = 1.1,2 and 2.5 at I = 0◦,10◦ and 20◦ at Re = 500 by

varying the number of internal node elements from N = 4

to N = 11. For N = 8, the force coefficients and the shed-

ding frequencies for the cases were well within 1% of those

for the maximum polynomial order. Additionally, a time-

step resolution study undertaken showed that the variation

in the force coefficients and shedding frequencies were

well within 1% of those for the maximum time-step used

(∆t = 0.001). Furthermore, the critical Reynolds number

(Rec) for the onset of the three-dimensional modes at I = 0◦

were in good agreement with that observed by [7].

Results

Linear stability analysis was performed on the two-

dimensional base flows obtained by time-marching the so-

lutions for at least 400 non-dimensional time units. For the

circular cylinder (AR = 1), the onset of modes A, B and QP

occurs at Re ≃ 190,260 and 380, respectively [1, 3]. For

AR = 1.1, the critical Reynolds number (Rec) for the onset

of modes A and B decreases marginally (∆Re ≃ 4) while

that of mode QP increases marginally (∆Re ≃ 2) as the in-

cident angle is increased. Furthermore, the variation of the

spanwise wavelength of these modes at onset does not vary

with the incident angle.

At I = 0◦, [7] reported the onset of mode Â and B̂ for
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Figure 1: Marginal stability diagram of the Re−I parameter
space showing the various transitions for Re 6 500, I 6 20◦

for the elliptical cylinder of (a) AR = 1.5 and (b) AR = 2.5.
The three-dimensional modes are each assigned a unique
colour and and the steady region is shaded in grey.

AR > 1.2 and AR > 1.75. For AR = 1.5, the onset of mode

Â was observed at Reynolds numbers close to the onset of

mode A instability as shown in figure 1(a). As the inci-

dent angle was increased, the onset of modes A, Â and B

decrease to lower Reynolds numbers, while that of mode

QP increases to higher Reynolds numbers. Furthermore,

at higher incident angles a subharmonic mode, mode C, is

observed. The onset of mode C occurs at lower Reynolds

numbers as the incident angle is increased. The boundaries

of modes A and Â are contiguous for this aspect ratio and

the two modes coalesce at higher Reynolds numbers [2, 20].

The parameter map for AR = 2.5, is shown in figure 1(b).

The Rec of modes Â and B decreases with incident angle

and mode C forms a closed region in the parameter space.

Mode B̂ is unstable over a large region of the parameter

space and is unstable for I . 10◦. Of significance in this

parameter space is the behaviour of mode QPA, which be-

comes unstable to perturbations beyond the onset of mode

Â. While this mode is observed as a synchronous/real mode

at low incident angles, the Floquet multipliers of this mode

gradually become quasi-periodic as the incident angle is in-

creased. The spanwise wavelength of this mode is similar to

the wavelength of mode A instability and shares the same

spatio-temporal characteristics of mode A at low incident

angles. Hence, this mode has been labelled as mode QPA.

Shown in figure 2 is the locus of normalised Floquet multi-

pliers on the complex plane at the specified parametric val-

ues as the incident angle is decreased. The multipliers lie

on the unit circle (|µ|= 1) and the imaginary component of

the multipliers decreases as the incident angle is decreased.

For clarity, only the positive component of the complex-
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Figure 2: Locus of the normalised Floquet multipliers on
the complex plane at the specified values for AR = 2.5. The
values chosen are close to the marginal stability curve for
mode QPA.

conjugate pair of the multipliers is shown in this figure (and

also in figure 3(a)). The unit circle (|µ|= 1) is shown by the

curved red line in these figures.

Furthermore, at a given incident angle, the Floquet multi-

pliers of mode QPA decrease and approach the real axis as

the Reynolds number is increased. Shown in figure 3 are

the locus of the Floquet multipliers on the complex plane

as the Reynolds number is increased for AR = 2.5, I = 8◦.

Around Re = 360, mode QPA becomes unstable to pertur-

bations and on further increasing the Reynolds number, the

magnitude of the imaginary component of the Floquet mul-

tiplier decreases and becomes a real mode for Re & 460.

The onset of the real mode is also dependent on the span-

wise wavelength. The spanwise frequency (St3D) of this

mode can be computed from the Floquet multiplier by

St3D = tan−1(µimag/µreal)/(2πT2D), where T2D is the time

period of shedding of the two-dimensional base flow. Eval-

uating St3D at Re = 400 for the above case, we obtain

St3D ≃ 0.0063187, which corresponds to ≃ 158.26 non-

dimensional time units or approximately thirty-four periods

of shedding (T2D = 4.689). Shown in figures 3(b) and 3(c)

are the three-dimensional reconstructions of two spanwise

wavelengths of this mode using isosurfaces of streamwise

vorticity (in red and yellow) at two instances that are seven-

teen periods apart for the cylinder (in blue) which spans 8D.

Clearly, the mode has traversed half a wavelength in the

spanwise direction, with the isosurfaces having swapped

signs. Independent three-dimensional DNS have also con-

firmed this behaviour (not shown here).

Conclusions

The three-dimensional transitions in the wake of elongated

bluff bodies are investigated for AR 6 2.5,Re 6 500 and

I 6 20◦. Parameter maps showing the occurrence of the

three-dimensional modes are presented for AR = 1.5 and

2.5. While modes A, Â, B and QP are observed for all in-

cident angles; modes B̂ and C occur over a limited range

in the Re− I parameter space investigated here. Together

with the well known modes of A, Â, B, B̂, C and QP, a

new mode, mode QPA, having spatio-temporal characteris-

tics and spanwise wavelength similar to that of mode A is

observed. For AR & 1.8, the imaginary component of the

Floquet multiplier of mode QPA decreases as the incident

angle is decreased and becomes a real mode at I = 0◦. For
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Figure 3: AR = 2.5, I = 8◦ - (a) locus of the Floquet multi-
pliers on the complex plane at the specified Reynolds num-
bers for a fixed spanwise wavelength of λ/D = 3.6. Three-
dimensional reconstructions of mode QPA in plan view
taken at (b) T = T0 and (c) T = T0+17T at Re= 400 show-
ing two spanwise wavelengths of the instability.

a given incident angle, this mode is transformed to a real

mode with increase in Reynolds number at a given span-

wise wavelength. Thus, the wake of an elongated elliptical

bluff body at incidence provides rich fluid dynamics with

a variety of three-dimensional transitions occurring over a

limited parameter space.
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